Computing derivative-based global sensitivity measures using polynomial chaos expansions

نویسندگان

  • Bruno Sudret
  • C. V. Mai
چکیده

In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol’ indices are recognized as accurate techniques, at a rather high computational cost though. The use of polynomial chaos expansions (PCE) to compute Sobol’ indices has allowed to alleviate the computational burden though. However, when dealing with large dimensional input vectors, it is good practice to first use screening methods in order to discard unimportant variables. The derivative-based global sensitivity measures (DGSM) have been developed recently in this respect. In this paper we show how polynomial chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions. Closed-form expressions for Hermite, Legendre and Laguerre polynomial expansions are given. The efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence of Generalized Polynomial Chaos Expansions

A number of approaches for discretizing partial differential equations with random data are based on generalized polynomial chaos expansions of random variables. These constitute generalizations of the polynomial chaos expansions introduced by Norbert Wiener to expansions in polynomials orthogonal with respect to non-Gaussian probability measures. We present conditions on such measures which im...

متن کامل

Addressing factors fixing setting from given data: A comparison of different methods

This paper deals with global sensitivity analysis of computer model output. Given a set of independent input sample and associated model output vector with possibly the vector of output derivatives with respect to the input variables, we show that it is possible to evaluate the following global sensitivity measures: (i) the Sobol’ indices, (ii) the Borgonovo’s density-based sensitivity measure,...

متن کامل

Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes

This paper gives an overview of the use of Polynomial Chaos expansions to represent stochastic processes in numerical simulations. Several methods are presented to perform arithmetic on, as well as to evaluate polynomial and non-polynomial functions of variables respresented with Polynomial Chaos expansions. These methods include Taylor series, a newly developed integration method as well as a ...

متن کامل

Global sensitivity analysis by polynomial dimensional decomposition

This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for ...

متن کامل

On spectral methods for variance based sensitivity analysis

Abstract: Consider a mathematical model with a finite number of random parameters. Variance based sensitivity analysis provides a framework to characterize the contribution of the individual parameters to the total variance of the model response. We consider the spectral methods for variance based sensitivity analysis which utilize representations of square integrable random variables in a gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rel. Eng. & Sys. Safety

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2015